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An n-body calculation designed for astronomical studies in stellar dynamics is able to 
handle large number of particles by restricting the set of points over which force values 
are required. The resulting model can be treated exactly in a computer by using integer 
arithmetic; the “data” representing the physical system are modified to conform to the 
model. Reversibility and an exact Liouville theorem result, making the model close to the 
physics in the sense that exactly conserved quantities of the model correspond to essential 
features of the physics. The cost of this pleasing correspondence is a reduction in the 
accuracy of conserving some of the conventional integrals. While the formulation affords 
a useful viewpoint for considering the relationship between computer models and the 
physical systems they represent that is quite different from that underlying conven- 
tional calculations, numerical considerations differ only in that the numerical methods 
used are coarser than with conventional calculations. The numerical approximations and 
the features responsible for the exact properties are presented in detail. The calculation 
has been successfully used as a tool for numerical experiments on spiral structure and 
gravitational stability. 

1. INTRODUCTION 

A gravitational n-body program that permits calculations with large numbers 
of bodies (125,000 typically) has been running for some three years [l, 2, 3,4]. 
Although others have run similar numbers of particles for gravitational [5,6] and 
plasma calculations [7] our calculation has some novel features that we feel may 
have wider application. The unusual features principally arise in the point of 
view concerning the relations between the underlying physics and the computer 
model. The physics is expressed in certain invariance properties which are exactly 
incorporated into the model. An exactly calculable model results, a model that is 
pleasing to work with because of the feeling of precision that it affords. The data 
have been modmed to fit the model. 

The transition from the physics to the model is the principal subject of this 
paper. Not all of the physical invariance properties can be built into a calculation; 
a matter of taste is involved in the selection of those deemed most important. We 
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feel that the model is close to the physics because it incorporates the physically 
essential features exactly. The point of view might be expressed by stating that the 
physics does not live in the differential equations-they are at best one way of 
describing what is going on. 

The motivation for seeking models with exact properties came from a demon- 
stration of the difficulty of making satisfactory numerical investigations of gravi- 
tational n-body problems (Ref. [8]; the results are also briefly described in Ref. [9]). 
The numerical difficulties manifested themselves in the irreversibility of the calcula- 
tion, which developed much more rapidly than had been expected. Some quantities 
can be computed adequately [IO-141 but Lecar’s [15] comparative studies show 
how difficult it is to draw detailed conclusions from gravitational n-body calcula- 
tions, even apart from problems of interpretation like those expressed by Zwanzig 
and Ailawadi [16] and by Lebowitz et al. [17]. 

The invariance properties are incorporated through a simple finite-difference 
scheme that can be made to represent a discrete phase space by starting it with 
integer values and thereafter giving it only integer values to work with. The size 
of the interval between allowed discrete locations is equivalent to the roundoff 
in a conventional calculation; a matter of some concern is precisely what effects 
result from intentionally making roundoff and truncation error as large as seems 
reasonable to be in keeping with the spirit of the problem. 

The problem in a discrete phase space may in turn be approached from either 
of two viewpoints. In the first, which is adopted here, the discrete representation 
may be regarded as a model approximating the dynamics of continuous systems. 
The model is capable of exact representation in the computer. All the approxima- 
tions are made between the physics and the model. The advantage is that the 
approximations occur at a well-defined stage of the argument, and once made, 
leave an exactly calculable system. The investigations of numerical properties 
then describe the extent to which the model does or does not describe a physical 
situation. The other viewpoint is to argue, from the outset, that the mechanics 
appropriate to a discrete system is being developed, with less concern for its 
possible applicability in the real world. The mechanics of a discrete representation 
is an interesting problem which will not be developed here; Greenspan [18] seems 
to have made some progress along these lines. 

Our calculation is reminiscent of some aspects of the “PIC” code in hydro- 
dynamics [19]. The PIC code is quite different in spirit, as it does not rely on 
nearly so literal an interpretation of the notion of ascribing properties to cells or 
to discrete locations. Some properties are freed from the lattice, and all are 
regridded from time to time. None of these things happen in our calculation. 

The model is introduced as a “game” in Section 2 (not in the sense of game 
theory); details of the model and of the relationship to physical systems appear 
in later sections. 
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2. A GAME 

A point is moved over a two-dimensional lattice according to these rules: 

1. It moves between locations whose coordinates (x, U) are integers. 
2. It may move from one allowed location to another, but must always 

alternate a move in which only x changes with one in which only u changes. Let 
the value of x immediately following the n-th step be x(~), the value of u following 
its next change after P) was reached be ~(~+l/~). 

. 3. The value of x(“+l) is given by 

x("+l) = x(n) + @+1/2)* (la) 

4. There is a table that gives the rule for changing u according to the present 
value of x. Let the value read out of this table following the n-th step be ftn). 
Then the value of zP+l/2) is given by 

U(n+1/2) = uwb-l/2) +jcn,* 

The pair of moves is a complete step. 

(lb) 

As an example (Fig. l), the particle might start from location “a” with x(O) = $2, 
z&-l/Z) = 0; the table of f’s gives f(O) = -2, so u(+lj2) = -2, as shown at “b” in 
Fig. 1. The shift in x next takes the point to “c” of Fig. 1, and so on until the point 
has returned to the location from which it started. Thereafter, it would endlessly 
repeat the same “orbit.” 

Suppose there were many points in such a diagram, each moving about the 
lattice according to the stated rules, without regard for the other points. Then 
each point on a given row of u = const would be moved the same distance to the 
right by the value of u at integer values of n as shown in Fig. 2a. The subsequent 
moves at half-odd integer values of 12 would be upward along a column of fixed x 
by the amount specified by f (Fig. 2b). 

Whatever the table off values (even if the table is changed at each n), (1) The 
contents of a location are transferred to another location as a unit. Thus, the 
contents of two locations cannot come to occupy the same location at a later 
time, nor can the contents of one location split to occupy two locations. (2) If the 
process were run backward after n steps (properly reversing the sequence of 
operations), all points would return to their original locations. 

The game just described bears several suggestive resemblances to dynamics. The 
lattice is like a discrete phase space (distinctions about evaluating x’s and u’s at 
different times aside) for a one-dimensional problem if the identifications 
x tj coordinate, u f--) velocity, f tf force per unit mass, n H time are made. The 
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property that occupants of a lattice location stay together is the Liouville theorem 
(measure-preserving flow). The game describes the reversible flow of an incom- 
pressible fluid in the (discrete) phase space. Since the collision-free Boltzmann 
equation describes this kind of motion in phase space, the game approximates to 
solutions of that equation. 

-3 -2 -I 0 +I +2 t3 
X--t 

f *3 +2 +I 0 -I -2 -3 

FIG. 1. Moves in an example of the game. 

Equation (1) is a finite-difference scheme for integrating k = U; ti =f, if the 
value of the time step be incorporated into the definitions of u and off to make the 
entire system dimensionally compatible. The game is like any other technique 
for numerical integration in that the integration is truncated at a certain order. 
Here it is truncated at an unusually low order. 

The game contains the physical features of the phase-space description exactly. 
The game carries out an approximate integration without doing arithmetic. It 
clearly can be generalized to more dimensions. We have used it both in a bit- 
shifting mode as suggested by Fig. 2, and in an arithmetic mode as suggested 
by Eq. (1). For stellar dynamics, the arithmetic mode utilizes storage space more 
effectively. 

Because the Liouville theorem and reversibility summarize the essential physics 
of stellar dynamics (in the relaxation-free limit), this scheme is close to the basic 
physics of the problem. There is a large number of integrals of the motion; the 
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occupancy of any phase location, as the motion maps the phase space into itself, 
is an integral of the motion. The motion is also exactly reversible (apart from 
questions as to how the force values f tn) turned out to be integers; this is discussed 
later). A quantity that looks like the conventional energy integral can be formulated 
(cf. Ref. [18]), but it differs in important respects from the usual energy integral. 
To be more precise, it does not seem to be possible to derive the forces from a 
scalar potential in an exact way (Section 8). 

Throughout this paper, the present calculation is contrasted with conventional 
gravitational n-body calculations. The term “conventional,” as applied to gravita- 
tional n-body calculations, means a calculation which, in spirit, attempts to treat 
everything exactly to the precision allowed by the computer. The forces are 
usually obtained by explicit summation of contributions due to each pair of 

a 

b 

FIG. 2. Systematic moves of many particles in the game. (a) The moves in which x is changed 
according to the present value of u; (b) the moves in which u is changed by the amount off(x). 
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particles. The calculations reported in [lO-151 are conventional in this sense. As a 
practical matter, it has not proved possible to handle more than about 250 particles 
in such calculations. 

The features setting the game apart from conventional gravitational n-body 
calculations are quantitative and not qualitative. Other representations are discrete, 
although with much finer steps than we use. Other integration schemes are finite- 
difference, although usually the ignored terms are of higher order than in this 
calculation. The conventional calculations have at least one exact integral (shared 
by this calculation): The number of particles. Thus, the working out of numerical 
details for this calculation indicates how they might similarly be worked out for 
other calculations. The distinction is a matter of degree, not of kind. There are 
certainly some features that are handled much better in the conventional calcula- 
tions than in this one. Angular momentum conservation is such a feature; in our 
calculation, angular momentum is expected to be conserved only in a statistical 
sense. But these disadvantages are more than offset by the ability to handle large 
numbers of particles. 

Another representation of an n-body system is useful for certain fundamental 
properties. The r space (6n-dimensional for three-dimensional problems) might 
also be discrete. The 6n-dimensional lattice can be mapped onto a one-dimensional 
array in which the representation of the system is now a vector with all elements 
zero except for one that describes the n-body system. After a time step, the system 
can again be represented by such a vector. Since the motion in the r space is 
completely determined (classical system), the transformation of one of these 
vectors into the other may be represented by a square matrix that contains just 
one nonzero element in each row and column. The matrix does not depend on the 
system configuration. The result of two time steps must be capable of representa- 
tion by a transformation matrix having the same properties. Since the matrix is 
finite (for bounded motion), it is an element of a cyclic group. The order of the 
group is the number of time steps in a Poincare recurrence time. This representation 
makes it intuitively clear that the game is stable as an initial-value problem. 

3. THE FINITE-DIFFERENCE SCHEME 

A. A Norm for the State Vectors 

Discussions of the stability of the finite-difference scheme require a norm that 
does not change as the step size is altered. This seems to be most conveniently 
done in the following way. Define a (dimensionless) state vector 
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which, according to the difference-scheme (1) obeys 

ps) = &(R-1) + BfbL-1) = (:, :, p-1, + ,;,,,n-1, 

= p&30' + i AT-lBf("-79, 

T=l 

the usual iterated discrete-time relations. Although the system may easily be 
generalized to unequal time steps, that is not necessary for this calculation. The 
integer x(“) represents a physical length JP) = xcn)dl, where Al is the (dimen- 
sioned) spacing of the allowed discrete locations. This, in turn, may be related to 
a dimensionless number representing displacements in units of some (dimensioned) 
normalization length L, 

X(72) = F = x(“) ol 
L’ (4) 

The same thing can be done with the velocities and the forces by introducing 
the time step At and a normalization time T, 

U(n-l/Z) = U(n-1/2) A! _T 
L At 

(5) 

Then a new state vector can be defined. 

s(n) = (uy&) = j@‘(n) = 2 (:, T;J p, (6) 

which can be used to define a norm, 

11 pl.) l/Z = py- (E(n))* 
(7) 

The superscript T denotes transpose. The independence of stepsize works as 
follows: Suppose Al is decreased. Then x must increase to represent the same 
physical length (requiring both the old and the new x to be integers places some 
constraints on the way Al is reduced; these only enter the discussion later). But 
the values of the elements of S are not changed, so the norm is unchanged. 

The separation of ftn) into an inhomogeneous term allows the particle inter- 
actions to be introduced in a way that permits the large matrix that advances the 
positions and velocities of all particles to be block-decomposed in the manner 
of Eq. (3). 
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B. Stability of the Finite-Dlyerence Scheme 
Stability is usually defined as the uniform boundedness of the difference between 

the computed solution (represented by 5’“)) and the exact solution to the system 
of differential equations, v(n d t), starting from the same initial condition 
([‘O) = u(O)), and requiring that the two kinds of solution be compared at corre- 
sponding times. In this sense, a necessary and sufficient condition for stability 
(see, for example Wendorff [20]) is that the norm of j/ A // < 1 + C At + O(At2). 
In fact, for this case, 

I/ A 11 = sup * = 1 +k($) +0(q)‘. 

An interesting feature of this calculation is that (d//L) cancels out in this definition 
of 11 A 1) through I/ 5 II. This is to be expected because uniformity requires that 
noninteger x’s and U’S be used, and there is nothing about the difference scheme, 
per se, that requires the x’s and U’S to be integers (or rational). The discrete phase 
space notion is tacked on to the difference scheme, and is not essential to it. 

Intermediate degrees of reduction of time step can also be investigated. Let the 
normalization length L be the spatial lattice interval of the original calculation. 
Then let m dl = L, so that increasing m refines the space lattice. Similarly, let 
q dt = T, and let the calculation run for 7 time steps of the initial calculation, 
so y1 = 47, After T time steps of the original calculation, A” is involved, giving 

II A” II2 -+ 1 + f + ; ~‘4 + T2 < 1 + 7 + 72. @a) 

The m and q dependence has dropped out, but the norm stays bounded for finite 7. 

This argument does not make use of any continuity properties of m, q, Al, or At. 

4. THE DISCRETE PHASE SPACE 

The nice features of this calculation, such as reversibility and the special kind 
of Liouville theorem (particles initially together remain together), derive from 
the discrete phase space. That, in turn, comes from the property of the difference 
scheme (1) that the x’s and U’S will remain integers if the f’s are all integers. It 
now remains to investigate how this modification affects the stability and accuracy 
of the calculation. It may be stressed again that this is a modification of the data 
to force it into the mold of a given model, such that the model can be treated 
exactly. 

There is nothing unusual about selecting an initial condition such that all the 
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x’s and U’S happen to be integers. The effect of the calculation with integers appears 
through the inhomogeneous term of Eq. (3), the term involvingf(“). 

Let t(“) be the vector representing the system with integer forces f(~); let <tn) 
be a corresponding vector representing a system with “exact” forces, #tn). Take 
the two initially equal, .$ co) = 5’“). Then the norm of the difference vector describes 
the additional effect of approximations in the force values, 

where q~ NJ = f(k) - $(lc) is the difference between the approximate and the “exact” 
forces at step k. 

The series (9) can be summed under a variety of circumstances. Only two 
extreme cases will be given, with indications of the important features in more 
realistic situations. 

Case (a). Completely uncorrelated, #j)@“) = (cp”} Sj, . Then 

DA2 = (+)” (y2) [ n(n + ‘k(2” + ‘) + 0 ($)“I 

UW 

Case (b). Completely correlated, $j)#“) = (~2) independently of j, k. 
Then 

Da2 = (-$” (qua) [( n(n 2f ” )” + n2 (t)“] 

m (G)’ (c$+) [$ + n2 ($)“I. 
(lob) 

This discussion is independent of the cause of the variation in the forces; in par- 
ticular it describes the usual roundoff in computations as well as our more drastic 
roundoff to produce integer force values. Case (a) describes situations in which 
there is no memory in the roundoff from one evaluation of the forces to the next. 
Most roundoff situations are assumed to be of this kind. A more realistic description 
results from admitting that rounding in one direction on one integration step is 
likely to be followed by another rounding in the same direction on the next inte- 
gration step. Although Case (b) is much more stringent than that situation, it 
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contains the essential features. The fourth power of n is typical of those cases with 
“memory” even if the “memory” lasts over a small fraction of the total duration 
of the calculation. 

The approximate expressions in (lOa) and (lob) can be used to investigate the 
effect of refining the spatial grid and the time step. The two cases yield 

and 

DB2 m $ [$ + T~] (cp”). 

(114 

(lib) 

With the correlation “memory” extending over shorter times, the dependence of 
D2 is very similar to (llb). For a “correlation” that dies out linearly with time, 
going to zero at T, , 

Dc2 w f Tc rf + T] (y2). (114 

The q4/m2 dependence remains, as might be expected. In this expression, the 
correlation lasts for the same time interval independently of the number of inte- 
gration steps required to cover that time interval. The partial memory is a reason- 
ably good picture of the rounding of force values in an actual calculation. Particles 
that don’t move much from one integration step to the next, in force fields that 
don’t change much from one integration step to the next, are likely to round in 
the same direction in successive integration steps. But after a while, the particle 
should have moved into a region where the rounding is substantially independent 
of the earlier history. In a system containing many “particles” with quite different 
motions, no one “correlation” history can describe the situation, so some kind 
of “average particle” or even a “worst-case particle” is described by 7, . This 
matter of rounding the force values to integers is essentially the only point at 
which our calculation differs in spirit from other n-body calculations. The corre- 
lation term arising in our calculation is matched by similar terms in more conven- 
tional calculations. The difference is one of degree. 

An interesting aspect of D2 in (11 b) and (1 lc) is that it is natural to consider 
alterations in which the time step and spatial interval are changed keeping q2/m 
constant; this keeps the forces constant and is the simplest change that does not 
affect the mass of the “particles.” Under such a change, a build-up of D2 with 
“uncorrelated” force roundoff terms would go to zero in the limit q + co, but 
that contribution to D2 due to the “correlated” force roundoff is not affected. 
The limiting process must be carried out in such a way that the spatial lattice is 
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refined faster than the square of the refinement of the time step to make D2 go to 
zero. 

The “correlated” contribution to D2 can be avoided by using rounding rules 
that eliminate the correlation between successive values of the force. The force 
values can be rounded by a rule like ENTIER (F + RANDOM), where RANDOM 
produces a “pseudorandom number” in the interval (0, l), rather than by the 
usual ENTIER (F + l/2), for example. This makes the correlation go to zero at 
the cost of doubled variance. But it can also lose the reversibility of the calculation. 

The uncertainty introduced through the roundoff can be quite large. Taking as 
an example (v2) = l/12 from the usual rounding, with q = m = 1 and T = 10, 
(1 la) gives l/B M 6 spatial units, and (1 lb) gives w 16. In conventional calcula- 
tions where the lattice spacing is much finer, these terms are less harmful. 

5. REVERSIBILITY 

Much has been written on the reversibility of machine calculations (see, e.g., 
Buneman [21]). Some of the discussions may leave the impression that finding a 
suitable reversible algorithm is the main problem. Reversible algorithms may be 
generated easily by deriving them from variational principles, but the resulting 
algorithms may be implicit or otherwise ill-suited to machine calculations. Even 
so, a reversible algorithm may not run reversibly if a different numerical value is 
computed at some point of the calculation as the system passes in the forward 
and reverse directions. It is instructive to see how the performance of the difference 
scheme (1) matches expectations. The formalism that is developed in the course 
of doing this clarifies the essential features of reversibility of machine calculations. 

Reversibility can be discussed in much the same way as the growth of roundoff 
errors. The same process that causes a calculation to be irreversible could cause 
two separate (“parallel”) calculations to differ if they started from identical initial 
conditions and ran forward together. Such “parallel” calculations were used to 
study reversibility in n-body calculations earlier [8]. 

Two calculations, using the difference scheme (l), with integer values of x, U, 
andf, can differ only if the value offat some part of the system has been rounded 
differently in the two cases. Let the two systems be described at the n-th step by 
vectors t(n) , qtn), with [to) = q(O). The forces governing the system described by 5 
are the same as those described by 7, but each is to be computed separately. Most 
of the time, the forces in the two systems will round identically, jr) = ft;“‘. But 
once in a while, presumably very rarely, the two will differ somewhere. As soon 
as this happens, the two systems will rapidly become quite different. The different 
rounding was the irreversible process. The notion of reversibility implies that it 
was somehow beyond the experimenter’s control. The number of separate inte- 
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grations that were successfully done before this happened might be used as a 
measure of the “reversibility.” 

This definition of reversibility may seem too stringent; it could be argued that 
all that is required is that the reversed system return to a place “close to” the 
original starting point [I I]. The definition used here does not make explicit use 
of the norm that would be required to give meaning to “close to.” This definition 
also seems preferable because it is free of some of the complications of interpreta- 
tion that go with explicit evaluations of I/ t(n) - [co) /I (see, e.g., Ref. [S]). 

Using the language of statistics (with substantial reservations about the language, 
but the comparison of two systems already implies an ensemble of sorts), we are 
led to inquire about the probability for the two force values to be different. Let 
F be the (“exact”) force that would be computed by a perfect process, and let the 
computed value be (F + SF). There is somewhere a roundoff boundary R. The 
probability for an error in the rounded force is the sum of the probabilities for 
making a rounding error in either direction. Near one rounding boundary this is 
&(I 6F 1) (the “mean absolute deviation”). If &(I 6F I) is essentially independent 
of F, the total probability of making a rounding error (in either direction) summed 
over all possible rounded results is approximately E = S(l 6F I). This can be 
obtained by considering that the probability for rounding incorrectly between R 
and R + 1 is S(l 6F I) x p(R), where p(R) is the probability to get R as a rounded 
value. When a sum over all possible R's is evaluated, &(I 61; I) factors out and 
Cp(R) = 1 since p(R) is a probability. This estimate of the chance of making 
an error in rounding is based on the notion of an underlying “reasonable” proba- 
bility distribution governing the force values. This is an oversimplification, but 
it seems to provide the only reasonable way to estimate the chance of making a 
rounding error, and thus of determining how good (or how bad) the calculation 
looks from the standpoint of reversibility. 

The probability of making a rounding error on one particle in one integration 
step is E = &(I 6F I). In the entire system with many particles and many integration 
steps, one error somewhere, at some time, will throw the system off the track. 
This is a “go-no-go” process that is described by a binomial distribution charac- 
terized by E. With w the total number of tries, the probability that no error has 
been made is (1 - l )” w 1 - WE. When w = l/e, there is a good chance that 
something irreversible has happened. Then w is the desired “reversibility measure.” 

In the large n-body calculation, force values are computed for each possible 
location in the space lattice. The number of force evaluations per integration 
step is twice the number of occupied lattice points (for two components of force 
in a two-dimensional calculation). 

For convenience, assume that all locations are occupied. In our early calcula- 
tions, there were (128)2 = 214 locations. The force calculation provided nearly 
full single-register precision for the IBM 360 series with floating point numbers 
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scaled to about 16 for the largest magnitude, giving SF m 2-ls. This leads to 
w = 2 x (number of integration steps) x 214 = 21s, or about 16 steps to an 
irreversible error. This is to be compared with our experiments [I] in which an 
exact fourfold symmetry was held for about 20 steps. The symmetry test can 
easily be seen to relate to the same criterion, since symmetrically disposed points 
were treated differently in the force calculation. 

The reversibility of the calculation will be affected by changes in the time step 
or in the lattice spacing. According to Eq. (5), the values of the integer force scale 
according to m/q2, and in a floating point calculation E = &(I 6F 1) will scale by 
the same amount. As m increases, the number of occupied lattice points will 
increase, but it cannot exceed the number of particles. Since the number of particles 
is a few times the number of allowed lattice points, (two-ten times the two-dimen- 
sional calculations; with three-dimensional calculations this ratio may be sub- 
stantially higher) this won’t make much difference. Then 

WE -+ q7 $ E,, [number of occupied lattice points] 

(12) 
+,r ( min number of allowed locations, number of particles)]. 

The number of integration steps (at the original time step) is T and E,, is that 
“probability” of error in one step at one location. But if the problem is scaled 
to keep q2/m constant, then the reversibility deteriorates with increasing q. A rule 
for scaling that simultaneously improves both D2 and reversibility seems to be 
impossible. 

Random rounding, suggested in the previous section as a means to reduce D2 
due to quantization, would destroy reversibility. This provides a way of testing 
for effects of reversibility in a given numerical experiment. However, actual 
“random-number generators” are not strictly random; it is possible to construct 
one that runs reversibly in the sense that it can recover any previous random output. 
With a “reversible pseudorandom number generator” it would be possible to 
design a reversible calculation with “random-number” rounding. This violates 
the notion that the “random” element is outside the experimenter’s control. 

6. LIOUVILLE THEOREM 

A second advantage of the difference scheme is that occupancy of phase locations 
is conserved in the motion. Again, this results from the fact that integers are used 
as allowable position, velocity, and force values. A further feature assuring this 
conservation is that the forces are computed at each of the allowed configuration- 
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space locations. All particles that occupy a given configuration-space location 
experience the same force. With the exactness that integer arithmetic provides, 
this assures that all particles in a given phase location go to the same new location. 
Similarly, there is no way in which particles from two different phase-space 
locations can wind up together. This is true even if there are errors in computing 
the forces, because a table of rounded integer forces is constructed and used. 
This method of handling the forces is the feature of the calculation that permits 
large numbers of particles to be handled. 

For calculations that are formulated differently from this one, the degree of 
phase conservation in the Liouville theorem can be discussed along lines of the 
reversibility argument of the previous section. The essential parameter is the 
chance that two particles, initially in the same phase-space location, will wind 
up at different locations. Given a difference scheme like Eq. (I), this is the chance 
that the two particles will be found to have different forces acting on them. Our 
calculation is set up so that this cannot happen because forces are rounded before 
being entered in the table; even rounding by adding a random number before 
entering in the table would not destroy the Liouville theorem property of our 
calculation. 

Just as rounding with random numbers provides an experimental way for 
testing reversibility effects, a modification of the present calculation can be devised 
that permits testing for effects resulting from violations of the Liouville theorem. 
This would simply involve rounding the force values separately each time the 
force associated with a certain configuration space point is fetched. While the 
test for reversibility with random rounding can be carried out without affecting 
the behavior of the system with respect to the Liouville theorem, the reverse is 
not true. If the experiment is set up to test the effects of violating the Liouville 
theorem, reversibility will also be violated unless a “reversible pseudorandom 
number generator” is used. 

For certain experiments on spiral structure, we have intentionally violated the 
Liouville theorem by rearranging the velocity distributions at a given configuration 
space location. This was done with a portion of the particles that were to approxi- 
mate the dissipative dynamics of “gas” rather than the dynamics of stars, leading 
to a quite different behavior of the resulting system. The details are given else- 
where [2]; because the process was dissipative as well as being in violation of the 
Liouville theorem, it was not an adequate test of the effects of violating the 
Liouville theorem alone. 

7. INTEGRATION ACCURACY 

The calculation approximates dynamics to the extent that the difference 
scheme (1) leaves out terms O(dt3). In this sense it again differs from other, more 
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sophisticated, schemes only quantitatively. Some calculations have been run in 
which the ignored terms get dangerously large. Because the coefficient of the dt3 
term includes (u * V) f (interpreted in terms of the physical problem), the situation 
is worst for high velocity particles in regions where the force gradients are large. 
We try to attach physical interpretations to experimental results only where the 
integration criteria indicate that the integration is proceeding safely. The integra- 
tion improves as the problem is refined by increasing m and q, if q2/m is held 
constant. 

Optimization of the calculation requires choosing the physical parameters in 
such a way that the truncation errors (errors involved in the finite difference 
scheme as approximating a derivative) in the worst case are about one lattice 
spacing after one integration step. This is larger than is customarily allowed, 
because the lattice spacing is large. The higher order ignored terms must be 
investigated; they may even be larger. We have partially avoided the problem 
by using a near-cutoff in the force law ((a” + x2 + y”)-‘) which suppresses high 
derivatives of the forces. Even so, we have had to look into the problem. 

8. FORCES 

The discussion so far might apply to any kind of nonrelaxing system. The 
relation to stellar dynamics, or to the gravitational n-body problem, arises through 
the forces used. These force values are computed just as if they were not to be 
rounded to integers, and then they are, in fact, so rounded. It is the fact that the 
forces need not be determined to high precision and can thus be obtained from 
the Poisson equation at a fairly small number of locations that lets the game 
handle very large numbers of particles. The time required for the force calculation 
is independent of the number of particles. It is important, however, that the force 
calculation take proper account of large numbers of particles at substantial 
distances. This is done by calculating in floating point, and only rounding to 
integer values at the very last step. The force calculation is the only part of the 
“integration” that requires arithmetic, when the calculation is done in the bit- 
manipulation mode described in Section 2. 

The computational efficiency resulting from the use of discrete representations 
is obtained at the price of using a bounded space, which in turn means introducing 
models for the density distribution beyond the boundaries of the system. These 
models always seem somewhat artificial. For the square regions in a 2-dimensional 
problem with periodic boundary conditions that we have used, the density model 
consists of replicated regions everywhere over the plane. A zero of potential at 
the boundaries would imply image systems that are mirror reflections of the original 
system. (In plasma problems, a zero of potential corresponds to a conducting 
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boundary. There is no gravitational analog of a conductor.) An inverse-square 
force law between particle pairs in the original space corresponds to a sum over 
all the particles appearing in the replicated systems of some (a priori unknown) 
force law. This peculiarity may be avoided by using a force law that corresponds 
to r-2 between all pairs of particles, including those in the image systems. The 
resulting force law, of course, does not look like r-2 between particles of the 
original system, when the images are ignored. The principal difference is at large 
separations. The method we have used to compute the forces, properly summed 
over image systems, is described in this section. These boundary conditions are 
convenient with forces calculated by Fourier transform methods. 

Isolated systems may be represented by using model density distributions that 
contain wide regions of zero density [4, 51. Suppose that an infinite system is 
broken up into allowed and forbidden regions with boundaries such that, if a 
particle strays across the boundary into a forbidden region, that particle is deleted 
from the system. If there is no vector separation of points wholly within one 
allowed region that, suitably displaced, can connect points of two different allowed 
regions, then a force law can be constructed such that particles behave as if they 
interact only with other particles of the same allowed region. With squares or 
cubes of edge L, this means an empty space of width L between image squares 
(or cubes). Larger spacings, even infinite ones, are permissible. The Fourier 
transform, with an empty space of width L, provides the most efficient way to 
compute forces for isolated systems. The few particles that spill over the boundaries 
into the forbidden regions are easily handled. 

A. Method of Calculating the Forces 

Fourier transform techniques, with two-dimensional calculations, have the 
advantage that the singular density distribution can be handled analyticallyl: 

V2# = 47rGa(x, JJ) 6(z). (13) 

If # and (J are expanded into two-dimensional Fourier transforms, the Poisson 
equation reduces to 

The notation is evident: j and k are dimensionless wavenumbers in the x and y 
directions (components of a vector in the reciprocal lattice), N is the number of 
allowed discrete locations in a periodic lattice cell length L (a dimensioned variable). 

1 The notation of this section is different from that of previous sections. Re-used symbols may 
have different meanings. 
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Both the potential # and the surface density (J carry dimensions. The x and y 
components of forces may be obtained by differentiating the potential (analytically). 

This form of the potential is clearly an example of the Convolution Theorem in 
Fourier transform theory. The prescription for using that theorem is to put a 
particle at the origin and to calculate the force field around it. Then the Fourier 
transform of the forces generated by an arbitrary density distribution may be 
obtained by a term-by-term multiplication of the Fourier transform of the density 
(crJ by the Fourier transform of the force field around the particle at the origin. 

Apart from the problem of “aliasing” this represents a formal solution to the 
problem, in a form amenable to machine calculation. “Aliasing” will be taken 
up later. 

The Fourier transform permits faster calculation of the force components. The 
fast Fourier transform leads to a number of operations proportional to N2 log(N2). 
This may be compared to N4 calculations for direct convolution. 

We have used a force derivable from a potential (x2 + y* + u2)-lj2 summed 
over the direct periodic lattice. This is clearly equivalent to setting z = a in the 
expression (14); it is the potential a units (of the small distance between discrete 
permitted locations) above the plane in which the particles move. 

In handling the isolated system by Fourier transform methods (particularly in 
two dimensions), the forbidden regions may be considered to be the result of 
multiplying the actual (surface) density distribution by a function that is unity 
at all points of the allowed region, but which is zero at all points of the forbidden 
regions. When the Fourier transform is taken, the product becomes a convolution 
in the reciprocal space. Then, for the same reasons of computational economy 
that made the use of Fourier transform methods attractive in the first place (to 
avoid N4 operations), it is best to handle this as a product in the direct space. This 
means that a machine code that will handle N x N configuration space points 
with periodic conditions can, with small modifications (to the crossing boundaries 
and generation of force convolution coefficient routines) handle the isolated 
problem on (N/2) x (N/2) configuration space points. 

B. Generation of Contlolution Coejicients 
When the forces about an isolated particle can be directly generated with ade- 

quate precision, the convolution coefficients are best obtained by Fourier-trans- 
forming the set of force values. This happens, for example, with the isolated 
systems where l/r2 forces are required. When the image particles are included, a 
different approach may be required. 

The (periodic) lattice sums converge slowly, making it difficult to get good 
approximations to the force over the discrete space. An alternative formulation 
of the problem of summing over the periodic lattice is provided by the Ewald 
summation method, commonly used in crystal dynamics problems. In fact, the 
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full method is not used, but the underlying idea is useful and provides a formula- 
tion that can be used for three-dimensional problems as well as for two. 

The essential trick of the Ewald method is to introduce an integral substitution 

m 
$ = & o dp e-x2p2. 

s (15) 

Let a vector in the direct space be decomposed into the sum of a vector to the 
origin of a periodic cell, x(l), and a vector within the cell, x. A sum over I repre- 
sents a sum over all equivalent points of the periodic lattice. Then the potential 
(apart from 4rGm factors) at the point x due to a particle at the origin of each 
periodic cell is 

The function in the curly brackets is periodic with the periodicity of the lattice. It 
can therefore be expanded into a Fourier series, 

{ > = C g[p; y(h)] e2niyth)‘x, 
h 

(17) 

where y(h) are the vectors of the reciprocal lattice. An essential part of this argu- 
ment is that the scalar products of y(h) * x(l) for vectors of the direct and reciprocal 
lattices have integer values. These terms then drop out of the Fourier series. 

For the two-dimensional problem, let P be a vector in the plane, and let G be a 
vector out of the plane. The problem may be considered in a four-dimensional 
space, so 5 and < are four-vectors spanning orthogonal subspaces. The “offset” a 
may be regarded as being along the fourth axis. Then 5 decomposes into periodic 
lattice parts g(1) - 5, and the potential is 

With the procedure used earlier, this is 

(19) 

since the scalar product of 5 . 5 = 0. The Fourier transform should only be in the 
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f plane: let n(h) be the reciprocal lattice vector in that plane. Then the Fourier 
coefficients are functions of the remaining spatial directions, and 

In arriving at this form there is some shifting of integration limits from integrals 
over a cell with a subsequent sum over cells to an integral over the entire plane. 
The details may conveniently be found in Born and Huang [22]. An alternative 
way of arriving at this result is to note that the function g is a special case of the 
elliptic function $a , and that the integral result is just Jacobi’s imaginary trans- 
formation (Ref. [23], Section 21.51; Ref. [24]). For that reason, this is called the 
“theta-function transformation.” The decomposition with an orthogonal subspace 
that does not get Fourier-transformed does not appear in the literature cited. 

In the usual Ewald summation process, the equality of two integrands is used 
to break the integral over p into two parts, each of which is rapidly convergent. 
For our calculation, we want the Fourier-transformed part, and the a term makes 
the convergence so rapid (by suppressing high-order Fourier components) that 
it is most economical to generate the convolution coefficients directly. Expressions 
like that of Eq. (20) can therefore be integrated over infinite limits, with the 
following results (return to the j, k notation as components of n made dimension- 
less): For two dimensions 

g(j, k; z = 0, a) = const e 
N 

d/(jz + k2) ’ 
(21) 

and for three (obtained by letting 5 and n span a three-dimensional subspace 
with < spanning a one-dimensional subspace orthogonal to S) 

g(j , k 
’ 

(22) 

where K,(x) is a modified Bessel function (see, e.g., Ref. [25], Section 9.6) and 1 
is the third wavenumber. The constants of Eq. (21) are the same as in Eq. (14) 
when all the loose ends are gathered up. 

These expressions give Fourier coefficients for computing the potential over 
all of the three-dimensional space. Thus, the potential represents point particles; 
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in the two-dimensional case they are constrained to move on a plane. They are 
not rods. 

There is an infinite potential to subtract. This may be done by setting the 
j = k = 0 (three dimensions, j = k = I= 0) term to zero. This is equivalent to 
setting the total mass in a cell to zero; there is a background of negative mass 
uniformly distributed over the cell (and thus over all of space). 

The forces may be derived from the potential; the array of convolution coeffi- 
cients for generating the force is 

.Fz(j, k) = const j e 
N 

z/V + k2) 
(23) 

in two dimensions, with an obvious extension to three. The array of convolution 
coefficients (23) can be generated once and stored; only one array is required, as 
the other arrays can be obtained from it by permuting indices. The value of the 
constant in Eq. (23) is to be separately determined for each problem as described 
in the paper setting forth the method [l]. 

C. The “Aliasing” Problem 

In a discrete periodic lattice, N x N Fourier coefficients are sufficient to describe 
any (reasonable) function defined on each of the discrete points. Beyond N values 
in one direction (of the reciprocal lattice), the values of e2ni’i’x repeat at each of 
the permitted locations. Only N values of j and N values of k are needed, but there 
is no rule to specify in which part of the j, k plane the region used is to be located. 
(This region is a Brillouin zone). Analytic expressions for # or F imply that all 
(integer) j, k are valid and will be used, but then we only use a limited set. This 
problem appears whenever Fourier series are used to represent phenomena 
otherwise regarded as continuous; in power spectral work, it is called “aliasing” 
[26]. In effect, a means is needed for summing over the high-order harmonics so 
that the calculation need extend only over the first Brillouin zone. 

The Fourier transform of the density is defined for all j, k as well. It depends 
on the exact shape assumed for each of the “particles.” Again, only N values of j 
and N of k are used, so the density is represented adequately by a small portion 
of the j, k plane. Let o(j, k) represent the Fourier transform of the density, and 
r&j, k) represent the Fourier transform of the potential about a point particle at 
the origin. Then the convolution theorem gives 

W, 4 = d<j, k) dj, k), (24) 

where z+G is the Fourier transform of the actual potential, and j, k assume all 
integer values. Let j, , k, represent the values of j and k reduced modulo N: 
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j = j, + JN for integer J. We seek a function ~,&(j~ , ka) that will correctly 
represent the potential at each allowed discrete location. The easiest way to 
obtain a good approximation for #R(j(jR , kR) is to assume that a(jR , kR) = ~(j, k), 
i.e., CT is periodic in j and k with period N. Then 

~O’R, kd = [ i f $(iR + JN, kR + KN)] CJ& , kR) 
J--cc K=.-02 

(25) 

represents a proper transformation of the entire j, k plane by using only some 
zone of N values of j and of k. The model for a particle is then a Dirac delta 
function repeated with the periodicity of the lattice (not the distance between 
allowed discrete points: a one-dimensional form of this is the “infinite Dirac 
comb” of Blackman and Tukey, Ref. [26], Section A2). 

This is not the only way to handle the aliasing problem: 4 might be modified 
to be a sum of infinite Dirac combs, with some shape ascribed to u. Functions 
might be used for which the sums can be done explicitly. However it is handled, 
the matter of high-order terms cannot be ignored. 

The calculation now uses force convolution coefficients obtained from a sum 
like that of Eq. (25) with individual terms like those of Eq. (23). Because the a term 
in Eq. (23) causes very rapid convergence, the sums can be evaluated in a computer. 
In the two-dimensional problem, four terms in each J and K are sufficient to 
generate force convolution coefficients to a relative error of about lo-lo. The 
picture is then of point particles, periodically replicated, with a force between 
any pair of points given by x[x2 + y2 + CZ~]-~/~. Forces are generated directly, 
not by taking differences of potentials. 

The same kind of problem of disposing of high-order terms will appear in any 
geometry. Truncation of the series implies certain assumptions about the character 
of the particles, and serious trouble can result if this is not properly taken into 
account. 

D. Potentials 

The forces might be derived from a potential by differencing successive values 
of potentials obtained by using the array of Eq. (21) as convolution coefficients 
rather than the differentiated form of Eq. (23). This has the advantage of assuring 
irrotational forces (except for rounding effects). The nature of the approximation 
involved is conveniently studied by the following argument. A component of the 
force at some location is the gradient of 1,4 or may be the difference of successive 
values of some other function x, 

F, = g = hl [x(x + Al) - x(x - &)I. (26) 



470 R. H. MILLER 

Then the relation between the two functions is 

(27) 

This function is not unique: a single x may not exist such that both F, and Fu can 
be found from it by differencing. The approximations in F by differencing methods 
follow directly from Eq. (27). With grids like 64 x 64 or 256 x 256, the approxi- 
mations are not small. 

Note that it is important, in differentiating a potential to get a force, that the 
Fourier representation including the entire j, k plane be used; not the collapsed 
representation of Eq. (25). Setting the C-0 term of the aliased convolution coeffi- 
cients to zero is equivalent to defining the additive constant in the potential in 
such a way that the potential sums to zero over all permitted discrete points in 
a periodic cell. The potential no longer averages to zero when integrated over a 
periodic cell. Potentials may not be directly calculated at points other than those 
permitted in the discrete lattice, using these Fourier techniques. Interpolation is 
permissible, however. In attempting to evaluate a potential energy (per periodic 
cell), the self-energy of particles must be eliminated, and the potential of over- 
lapping particles must be properly evaluated. 

A total potential for the (periodically replicated) system can be defined. This 
requires subtracting a uniform density from the system so the total mass inside 
a periodic cell is zero. Then the total potential energy per unit cell can be defined 
in the usual way. The effects of interactions between periodically replicated cells 
can be eliminated just as they are in crystal physics. It should even be possible to 
recover a kind of virial theorem for a periodic system such as is in fact calculated 
when the Fourier techniques are used. We have not done any of this so far. 

9. CONCLUSIONS 

The particularly simple difference scheme used in the large n-body calculation 
makes it easy to investigate the numerical and computational properties of the 
system, even though restricting the “particles” to a discrete phase space as coarse 
as the one used here forces consideration of some aspects of the difference schemes 
that are usually ignored. The appearance of spatial lattices as well as time steps 
makes this look a little bit like the problem that arises in discussing partial differen- 
tial equations. Indeed, from one point of view, we are solving a partial differential 
equation by integrating along its characteristics-the individual particle orbits. 

The finite difference scheme is stable as an initial-value calculation. Modifications 
due to the discrete phase space and discrete force values can be introduced into 
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the inhomogeneous term in the difference scheme and explicitly evaluated. The 
features of the system that give rise to reversibility and to the special form of the 
Liouville theorem appropriate to this problem can be isolated and tested 
experimentally. We have not yet conducted such experiments and do not know 
how important these features are in the representation of real stellar systems. 
However, they are the features that make the approximation appealing because 
it is close to the physics of the problem. The scheme is also appealing because it 
leads to a model that can be computed exactly. All the approximations are between 
the physical system and the model. The estimates of this note are attempts to see 
what has happened to the physics in setting up the model. 

The idea underlying this calculation, that of modifying the data to fit the 
calculation, rather than the other way around, may have wider applicability in 
physical calculations than just to the n-body calculation described here. The 
description has been given in detail to show that the approximations can be fairly 
thoroughly analyzed. 

The notions of discrete spaces can be directly applied to several kinds of calcula- 
tions. Prendergast [27] has devised a similar calculation for hydrodynamics; 
there, the system is made to relax to an assumed form for a distribution function 
after each integration step so that what were “particles” in the n-body calculation 
become “streams.” Prendergast reports very effective handling of shock-like 
discontinuities. Again, the discrete phase space notion seems to have direct 
application to a kind of semiclassical Fermi gas approximation to crystal or 
molecular dynamics-the exclusion principle can be rigorously built in. Indeed, 
the method is directly applicable to any system that can be described in terms of 
an equation like the Boltzmann equation. But the idea of exactly calculable models 
may have substantially wider applicability. 

We have used the programs described here to study persistent spiral structure 
in self-gravitating systems, and for certain studies in the stability of plane self- 
gravitating systems. The results are being published elsewhere [2]. 
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